Theorem :
If a = 4,6,10,14,26,34,38,62,122 or 254 and
p prime > a,
n=a*p+1 is prime if n<>0 mod 3 and
if 2n-1 = 1 mod n .
Demonstration :
We use the "Well Known theorem" where n=hqk+1 with h=2p, p and
q are prime and k=1, it comes :
If n=2pq+1, p and q primes and q>2p, if there is an integer a such
an-1 = 1 mod n and gcd(a2p-1,n) =1 then n is prime.
If a=2 we have evidently in particular 2n-1 = 1 mod n (Fermat
theorem).
But 22p-1=(2p+1)(2p-1), and if p is a Mersenne
prime, Mp=2p-1 prime,
and if 2p+1=3*p1, with p1 prime, 22p-1=3*p1*Mp.
As n=2pq+1 < p1=(2p+1)/3 and n<Mp, and if n<>0 mod
3 , gcd(22p-1,n)=1.
In practice it exists only 10 known values with Mp and
p1=(2p+1)/3 primes (where 2p+1 prime for
p=2) :
p=2,3,5,7,13,17,19,31,61,127.
Therefore for these values of p, gcd(22p-1,n)=1, and this condition
suppressed the test becomes very simple.
Remarks : we can transform this test with a=3 or others bases, but common values p where (ap-1)/(a-1) and (ap+1)/(a+1) are primes become too rare.
We immediately deduce of the above demonstration, because the Fermat test is sufficient in base 2 :
Corollary :
Numbers of the form n=a*p+1, with n<>0 mod 3, p prime and a = 4,6,10,14,26,34,38,62,122 or 254 are never pseudo-primes in base 2.
Iterative utilization of the test :
Let p0 a prime number > 254, if we find ai such
p1=ai*p0+1 prime, with ai=
4,6,10,14,26,34,38,62,122 or 254, it is possible to continue the process
until the failure of the test among the 10 values of a.
With this manner, by using an unique type of test, we build a tree of prime
numbers and chains linked together by the ai :
pn = ...(ak(aj*(ai*p0+1)+1)+1) .... , and pn can be represented in general manner by the certificate of primality : p0->(ai,aj,ak,...), constituted of n primes (even if p0<254).
Examples : 3->(4,4,14,26,122,38,26) =
3,13,53,743,19319,2356919,89562923,2328635999
5->(6,10,6,10,26,6,34,6) =
5,31,311,1867,18671,485447,2912683,99031223, 594187339
(3*230+1)->(4,26,254) =
3*230+1,4*(3*230+1)+1, ...........
(45*2119-1)->(62,122) =
45*2119-1,62*(45*2119-1)+1, ..........
With this test why not research prime records P=ai*(large prime p0)+1, if we have an optimized program ....and the necessary computation time !? However the probability to find a prime by this method is not increased, and therefore the process ends more often to the failure when p0 is increased.
Soon a program using this method ...