The primes of the forms (2 n - k)*2n + 1 (for all k<2n) and (2 n +k)*2n - 1 (for even k<2n) can be tested with Proth's Theorem (N-1 test), the forms (2 n - k)*2n - 1 (for all k<2n) and (2 n +k)*2n - 1 (for even k<2n) with Lucas Theorem (N+1 test), the others forms seem more difficult to test.
So we can obtain primes as less as big as the others forms k*2n+1 ou k*2n-1 (see Top below).
If we puts Np(k,n)=k*2n+1 and Nm(k,n)=k*2n-1 there exists many relationships and arithmetical properties with the new primes. Relationships with Mersenne numbers are as evident : For example : Nmp(2,n)=Mn2.
k | n, Nmp(k,n)=(2 n - k)*2n + 1 prime | n max |
1 | 1,2t,4t,32 | 400000(a) |
2 | Nmp(2,n)=(2n-1)2=Mn2 | - |
3 | 3s,5,7s,9,11,13s,15,19s,35,39,45,51,59,213,607,1315,1435 | 3000 |
4 | 4t,8,12,14,18,32,62tc,66,96,120,122c,140t,180,202,228,740,800,810,1012,1142,1386,
1496,1698,4622,5674 |
19000 |
5 | nkS(3,5) | - |
6 | 3 | 4000 |
7 | ? | 180000 (c) |
8 | 5,7t,13,15t,27,57,163,217,245,253,637,753,1605,4607,4703,5575,5843,7013,
8913,12645 |
12689 |
9 | 4,7,19,43,46,82,199,247,266,310,379,857 | 1000 |
10 | 4c,6,10,12,14c,22,30,34,72,172,264,322,430 | 1000 |
11 | 5,11,27,77,99,285 | 1000 |
12 | 5,6,11,14,21,45,106,111,114,166,221,230,275 | 1000 |
13 |
6564
|
90000 (c) |
14 | 5,7t,9,11t,13,19,25,73,209,361,381,409,471,905 | 1000 |
15 | 4,6,14,22,50,238,258,678 | 1000 |
16 | 8,10t,16,28,34,62,70,160,226,346,440,446,524,1138,1264,1984,2096,3370,5236,5686,
5918,15440,19592 |
19681 |
17 | 13,15,21,37,39,71,205,227,231,793 | 1000 |
18 | 5,7,13,23,25,35,77,875 | 1000 |
19 | 12,30,44,206,266,340,436,628,682 | 1000 |
20 | nkS(3,5) | - |
21 | 5,6s,7,8,9s,11,13s,14,15,20,28,45,49,50,57,92,100,101,175,188,428,434,459,478,498,
638,680,731,883,1032,1126,2362,2667,3520,3854,4004,5116,6051,6295,7659,8796, 8862 |
14000 |
22 | 6,42,54,254,506 | 1000 |
23 | 7,17,89,103 | 1000 |
24 | 5,7,8,9,14,359,394 | 1000 |
25 | 10,12,18,30,42,90,282 | 1000 |
26 | 5,11,19,109,445,469,739,881 | 1000 |
27 | 15,21,69,141,309,591,3165 | 5000 |
28 | 8,64,280,608 | 1000 |
29 | 5,45,375,393 | 1000 |
30 | 10,14,22,34,58,122,722 | 1000 |
31 | 6t,8c,12t,18,20,40,160,228,244,260,574,736,820 | 1000 |
32 | 7,17,29,35,37,159,241,277,317,327,395,1181,1675,1763,2043,2083,2099,3973,4055,
6059,6605,6771 |
8567 |
33 | 7,8,16,21,41,48,91,92,148,187,424,527,532,708,833 | 1000 |
34 | ? | 100000 (c) |
35 | nkS(3,5) | - |
36 | 7,11,13,18,31,42,43,141,147,230,239,255,267,295,651 | 1000 |
37 | 26,50,850 | 1000 |
38 | 9,15,37,39,59,105,877 | 1000 |
39 | 6,7,12,18,92,119,236,551,569,637 | 1000 |
40 | 20,24,140,276,390 | 1000 |
41 | 57,327 | 1000 |
42 | 6,9,39,46,50,57,67,82,87,206,282,309,521 | 1000 |
43 | 16,44 | 1000 |
44 | 7,11,49,61,79,139,167,173,269,301 | 1000 |
45 | 6,12,16,18,24,32,72,88,232,250,312,696,878 | 1000 |
46 | 6,12,16,24,42,84,106,114,274 | 1000 |
47 | 7,9,13,19,31,35,37,47,73,79,113,215,299,559 | 1000 |
48 | 12,36,468 | 1000 |
49 | 18,22,70,90,110,192,288,318,658 | 1000 |
50 | nkS(3,5) | - |
51 | 7,19,25,53,187,251 | 1000 |
52 | 6,10,86,286,434,482,694 | 1000 |
53 | 7,9,11,21,69,153,157,193,219,229,237,367,479,537,677,697 | 1000 |
54 | 6s,7s,8,14,17,18s,20s,21,27,32s,37,40,42,53,80,89,92,107,109,215,225,469,474,559,997,
1847 |
3200 |
55 | 6,120 | 1000 |
56 | 11,21,45,51,59,85,93,157,159,225 | 1000 |
57 | 6,9,22,42,54,57,79,153,297 | 1000 |
58 | 20,32,52,112,148 | 1000 |
59 | 95,121,275 | 1000 |
60 | 6,8,18,172,190,334 | 1000 |
61 | 6,8,10,14,24,34,36,50,62,84,130,178,534,930 | 1000 |
62 | 27c,51,93,189,747c | 1000 |
63 | 8,12,33,37,144,207,328,348,537,635 | 1000 |
64 | 12,22,102t,114,426 | 1000 |
65 | nkS(3,5) | - |
66 | 7,9,17,91,137,213 | 1000 |
67 | 10,14,38,46,74,122 | 1000 |
68 | 7c,13,15,25,27,37,43,47,51,93,177,525,575,597,789 | 1000 |
69 | 9,12,30,69,138,267,429,621 | 1000 |
70 | 12,18,20c,34,62,82,146,226,238,410,444,628,714,942 | 1000 |
... | ||
79 |
?
|
150000 (c) |
(a) with help Didier Boivin
(c) with help of Donovan
Johnson
k | n, Nmm(k,n)=(2 n - k)*2n - 1 prime | n max |
1 | 2t,4t,5,9,10,18,38,45,50,57,108,161,208,224,225,240,354,597,634,1008,1080,1468,1525,1560 | 3000 (b) |
2 | 2,3,4,6,7,10,12,15,18,19,21,25,27,55,129,132,159,171,175,315,324,358,393,435,786,1459,1707,2923 | 5000 (b) |
3 | 2,nkB(3) | - |
4 | 3,4t,10,35,47,62t,71,82,140t,335,484,502,655,1451,1475,1934,2464,2647,3562 | 5000 (b) |
5 | 3,5,9,101,1193 | 14000 (b) |
6 | nkB(3) | - |
7 | 3,8,17,49,115,227,416,478,977,1052,1652,1702 | 3000 (b) |
8 | 4,6,7t,8,12,15t,20,30,54,72,84,110,126,139,150,191,211,285,303,369,376,392,447,1566,1588,1795,2550 2743 |
4000 (b) |
9 | nkB(3) | - |
10 | 15,31,103,135,253,1141 | 3000 (b) |
11 | 4,6,13,14,22,28,34,36,41,69,76,93,141,209,216,281,558,617,648,917,1229,1472 | 2000 (b) |
12 | nkB(3) | - |
13 | 4,5,8,9,10,14,20,26,28,31,33,41,49,57,92,98,131,344,371,472,609,1136,1589,1853 | 2000 (b) |
14 | 4,7t,10,11t,20,23,26,31,46,52,56,98,547,1256 | 2000 (b) |
15 | nkB(3) | - |
16 | 9,10,45,184,325,604,642,994,1368,1756 | 3000 (d) |
... | ||
32 | 9,11,24,59,79,90,113,125,163,186,199,239,311,312,350,434,543,1833,2022,3422,4624,4812,5445,5856 | 7000 (d) |
34 | 11,18,26,35,95,98,171,211,374,379,391,815,915,950,2930,4846,5127,7319,7835,9586 | 10000 (a) |
... | ||
64 | 7,40,47,62,75,80,87,102,112,119,135,219,295,440 | 2000 (d) |
... | ||
127 | 7,8,11,13,16,17,53,59,88,97,102,123,134,149,155,212,253,278,795,1157,1395,2941 | 4000 (d) |
128 | 10,16,1735,2235 | 4000 (d) |
... | ||
256 | 9,10,16,22,38,44,69,109,200,205,440,514,704,1056,1576 | 3000 (d) |
... | ||
511 | 13,17,29,32,94,326,385,970,992,1018,1186,1232,2470,3994,4717,5258,6514 | 8000 (d) |
512 | 10,12,14,16,24,27,30,33,36,49,63,94,96,100,137,160,190,294,338,376,387,418,825,1548,1657,1824,1940,3341,3485,5604,7077,7433,8753,9495,22770,26484,29757 | 30000 (d) |
... | ||
1024 | 31,118,124,138,279,310,315,318,696,747,1176 | 3000 (d) |
k | n, Npm(k,n)=(2 n +k)*2n - 1 prime | n max |
1 | 1t,2,3t,4,6,10,16,24,26,35,52,55,95,144,379,484,939 | 1000 |
2 | 1,2,3,5,8,9,12,15,17,18,21,23,27,32,51,65,87,180,242,467,491,501,507,555,680,800 | 1000 |
3 | nkB(3) | - |
4 | 1,2,5,13,16,20,26,118,128,209,269,296 | 1000 |
5 | 1,3,79 | 1000 |
6 | nkB(3) | - |
7 | 1t,2,4,13,40,88,157,652,782,964 | 1000 |
8 | 1,2,3,4,5,9,18,20,21,29,33,61,63,65,104,135,137,204,282,978 | 1000 |
9 | nkB(3) | - |
10 | 1,299,569 | 1000 |
11 | 2t,3,4t,6t,7,8,23,24,36,52,58,192,224,336,398,544,631 | 1000 |
12 | nkB(3) | - |
13 | 1t,2,3,4,5,7t,8,11,15,22,23,25,27,40,49,62,74,151,187,385,467,650 | 1000 |
14 | 1,2t,4,5,8,10t,13,20,40,104,110,170,377 | 1000 |
15 | nkB(3) | - |
k | n, Npp(k,n)=(2 n + k)*2n + 1 prime | n max |
1 | 1,3,9 | 40000 |
2 | Npp(2,n)=(2n+1)2 | - |
3 | 1,2,3,6,10,17,37,70,105,126,155,165,215,765 | 1000 |
4 | 1t,3,5t,15,17,21,159,161 | 1000 |
5 | 2,4,10,16,20,22,56,68,128,410 | 1000 |
6 | 1,2s,3s,4,5,6s,8,10,11s,12s,19,27,28,32,36,48,56,61,131,170,251,750,771,779,790,874,
1176,1728,2604 |
3000 |
7 | 1t,5,9,11,15,81 | 1000 |
8 | 30,498 | 1000 |
9 | 1,2,3,4,6,14,22,24,68,86,279,645,776,959 | 1000 |
10 | nkS(3,5) | - |
11 | 2t,4t,6t,16,22,28,34,234,452,476,554,992 | 1000 |
12 | 1s,4,5s,7,17,49,67,68,115,445 | 1000 |
13 | 1t,7t,43,67,107,203,953 | 1000 |
14 | 2t,6,10t,14,22,50,158,418,562,570 | 1000 |
15 | ? | 100000 (c) |
16 | 1,3t,7,9,13,15,19,25,63,75,85,113,119,125,199,363,437,815,885 | 1000 |
17 | 32,68,528 | 1000 |
18 | 1s,2s,5s,10s,14,29,55,85s,410 | 1000 |
19 | 1,595 | 1000 |
20 | 2c,4c,8,18,22,28,36,38,68,82,124,202,356,452,568,802 | 1000 |
21 | 1,2,3,4,5,6,7,8,10,12,13,14,15,21,23,36,48,51,52,181,212,338,651,764,895,943 | 1000 |
22 | 3t,39,423 | 1000 |
23 | 2,6,10,82,270,870 | 1000 |
24 | 1s,2s,3,4s,7,10s,16,17,23,27,43,49,126s,187,220,257,443,577 | 1000 |
25 | nkS(3,5) | - |
(c) with help of Donovan Johnson
NCmp(n)=(2 n - n)*2n + 1 prime for n =1,3s,4t,10,11,16,47,57,69,166,327,460,1108,4740,20760,21143
(n<=22000)
NWmm(n)=(2 n - n)*2n - 1 prime for n =2,4t,5,8,77,377
(n<=1000)
NWpm(n)=(2 n + n)*2n - 1 prime for n =1b,2,34,107,1568,1933,3551,6793
(n<=10000 with help of Gary Chaffey)
NCmp(n)=(2 n + n)*2n + 1 prime for n =1b,3,6,14,21,27,51,61,103,123,126,414,499
(n<=1000)
(2 n - n+1)*2n + 1 prime for n
=1t,2t,39,44,62 (n<=1000)
(2 n - n-1)*2n + 1 prime for n =
2t,7t,11,13,14,20,37,53,71,132,140,613,641,665,757,788
(n<=1000)
(2 n - n+1)*2n - 1 prime for n
=1t,2t,3,8,14,35,75,83,89,90,215,342,753 (n<=1000)
(2 n - n-1)*2n - 1 prime for n =
2t,3,7t (n<=1000)
(2 n + n+1)*2n - 1 prime for n =1,13 (n<=1000)
(2 n + n-1)*2n - 1 prime for n =
1t,2,3,5t,9,18,30,48,54,278,450,464 (n<=1000)
(2 n + n+1)*2n + 1 prime for n =
2,3,4,5,15,23,53,57,75,233,464,671 (n<=1000)
(2 n + n-1)*2n + 1 prime for pour n =
1t,5t,49,269 (n<=1000)
Form | Digits | Who | When | |
Nmp(k,n) | (2^19592-16)*(2^19592)+1 | 11796 | Henri Lifchitz | 12/08/1998 |
Nmm(k,n) | (2^9586-34)*(2^9586)-1 | 5772 | Didier Boivin | 17/02/2002 |
Npm(k,n) | (2^978+8)*(2^978)-1 | 589 | Henri Lifchitz | 12/08/1998 |
Npp(k,n) | (2^2604+6)*(2^2604)+1 | 1568 | Henri Lifchitz | 12/08/1998 |
Twin | (2^309-71)*(2^309)-1 (2^309-71)*(2^309)+1 |
187 (p) | Gary Chaffey | 30/06/2005 |
Sophie Germain | (2^130-7228)*(2^130)-1 2*((2^130-7228)*(2^130)-1)+1 |
79 (p) | Gary Chaffey | 30/06/2005 |
BiTwin | (2^10-169)*(2^10)+/- 1 2*(2^10-169)*(2^10)+/- 1 |
6 (p) | Gary Chaffey | 30/06/2005 |
Nouveau Woodall | (2^6793+6793)*(2^6793)-1 | 4090 | Gary Chaffey | |
Nouveau Cullen | (2^21143-21143)*(2^21143)+1 | 12730 | Henri Lifchitz | 10/05/2004 |
NCullen&NWoodall = Twin | (2^4-4)*(2^4)+1 (2^4-4)*(2^4)-1 |
3 | Henri Lifchitz | 12/08/1998 |
CC length 2 |
(2^747-4)*(2^747) + 1 2*((2^747 - 4)*(2^747 + 1) -1 |
450 (p) | Henri Lifchitz | 12/08/1998 |
CC length 3 |
(2^31-1718)*(2^31)-1 2*((2^31-1718)*(2^31)-1)+1 4*((2^31-1718)*(2^31)-1)+3 |
19 (p) | Gary Chaffey | 30/06/2005 |
CC length 4 (type 1) |
(2^20-8161)*(2^20)-1 |
13 (p) | Gary Chaffey | 30/06/2005 |
Triplets |
(2^15-31847)*(2^15)-1 |
8 (p) | Gary Chaffey | 30/06/2005 |
Those numbers have similar properties with (2^n+-k)*2^n+-1, for their forms of prime factors, and in particular if k=1 and n=p^m, we recognize some properties of the Generalized Fermat numbers. A more accurate study will be made as soon as possible.
Didier Boivin has checked the primality of these numbers for b from 3 to 7, n from 1 to 1000, and k from 1 to 20. (Word document).
You can also consult the next link :