If a+ b = 1 we can use an extension of the pseudo primality test "in cluster" in order to test in one pass the set of the pi of the chain (See Generalization of the Euler - Lagrange theorem and new primality tests).
The implantation of the corresponding algorithm allows us to obtain quickly the first following results,
with L >= 5, P1 is the smallest prime of this chain of
length L :
L | Pi+1 = 4*Pi - 3, P1 |
13 | 60389563279 |
12 | 95472623 |
11 |
95472623 |
10 |
95472623 |
9 | 754451 |
8 | 408539 |
7 | 5869 |
6 | 523 |
5 | 331 |
L | Pi+1 = 6*Pi - 5, P1 |
9 | 95807339 |
8 | 1273663 |
7 | 184409 |
6 | 1601 |
5 | 1237 |
L | Pi+1 = 9*Pi - 8, P1 |
10 |
61637129 |
9 | 16908181 |
8 | 1627603 |
7 | 125399 |
6 | 13249 |
5 | 233 |
Moreover, for a = 2m we can write Pi+1 = ((P1-1)/2)* 2m*i+1 + 1, so a Proth number with k= (P1-1)/2, and the exponent of the power of two is in arithmetic progression of difference m !
Example : for m=60 we find a chain of length L= 5 with :
P1 = 452227 = 226113*2 + 1,
P2 = 226113*261 + 1
P3 = 226113*2121 + 1
P4 = 226113*2181 + 1
P5 = 226113*2241 + 1
Some results for other m :
L | Pi+1 = (24)*Pi -(24-1) , P1 |
9 |
5676191 |
8 | 2218547 |
7 | 42701 |
6 | 607 |
5 | 467 |
L | Pi+1 = (26)*Pi -(26-1) , P1 |
9 |
6095693 |
8 | 3962213 |
7 | 9803 |
6 | 9803 |
5 | 2531 |
L | Pi+1 = (28)*Pi -(28-1) , P1 |
8 | 43105529 |
7 | 427591 |
6 | 156679 |
5 | 331 |
L | Pi+1 = (210)*Pi -(210-1) , P1 |
8 | 55469933 |
7 | 224563 |
6 | 37571 |
5 | 4679 |
L | Pi+1 = (212)*Pi -(212-1) , P1 |
8 | 25782037 |
7 | 11711033 |
6 | 15971 |
5 | 6029 |
L | Pi+1 = (2100)*Pi -(2100-1) , P1 |
4 | 67567 |
L | Pi+1 = (2240)*Pi -(2240-1) , P1 |
3 | 4127 |
L | Pi+1 = (2720)*Pi -(2720-1) , P1 |
3 | 8237 |
You can also consult the next links :