J'appelle nombres premiers en réseau une suite de nombres premiers composée de progressions arithmétiques et/ou géométriques sur plusieurs dimensions (2 ou plus).
Cette suite peut-être formée de nombres premiers consécutifs.
Pour des progressions arithmétiques il s'agit de trouver des nombres
premiers avec un écart e1 "horizontalement"
et e2 "verticalement" :
Le nombre en haut à gauche des tableaux indique le nombre de nombres premiers, c indique qu'il s'agit de nombres premiers consécutifs.
2D Jumeaux :
9
|
42 -->
|
Jumeaux
|
|||||
90
| V |
17
|
59
|
101
|
9
|
42 -->
|
||
107
|
149
|
191
|
90
| V |
19
|
61
|
103
|
|
197
|
239
|
281
|
109
|
151
|
193
|
||
Jumeaux
|
199
|
241
|
283
|
2D Reseau :
18 |
60 -->
|
|||||
798
| V |
-
|
-
|
224033
|
-
|
224153
|
-
|
224711
|
224771
|
224831
|
224891
|
224951
|
-
|
|
225509
|
225569
|
225629
|
225689
|
225749
|
225809
|
|
226307
|
226367
|
226427
|
226487
|
226547
|
-
|
19 |
90 -->
|
|||||
378
| V |
1973
|
2063
|
2153
|
2243
|
2333
|
2423
|
2351
|
2441
|
2531
|
2621
|
2711
|
2801
|
|
2729
|
2819
|
2909
|
2999
|
3089
|
-
|
|
-
|
-
|
-
|
-
|
3467
|
3557
|
2D Escalier :
7c
|
2-->(jumeaux)
|
|||
4
| V |
5
|
7
|
||
11
|
13
|
|||
17
|
19
|
|||
23
|
Si e1=2 on a aussi des jumeaux en progression arithmétique de raison e2 :
8c
|
10 -->
|
||||
8
| V |
67944073
|
67944083
|
|||
67944091
|
67944101
|
||||
67944109
|
67944119
|
||||
67944127
|
67944137
|
8c
|
2 --> (jumeaux)
|
||||
28
| V |
263872067
|
263872069
|
|||
263872097
|
263872099
|
||||
263872127
|
263872129
|
||||
263872157
|
263872159
|
2D 4x2 :
8
|
6 -->
|
|||
30
|
|
11
|
17
|
23
|
29
|
41
|
47
|
53
|
59
|
8c
|
6 -->
|
|||
20
|
|
344231
|
344237
|
344243
|
344249
|
344251
|
344257
|
344263
|
344269
|
2D Triangle :
6
|
6 -->
|
||
24
| V |
13
|
||
37
|
43
|
||
61
|
67
|
73
|
6c
|
6 -->
|
||
24
| V |
4116419
|
||
4116443
|
4116449
|
||
4116467
|
4116473
|
4116479
|
Pour des progressions arithmétiques il s'agit de trouver des nombres
premiers avec un écart e1 "horizontalement",
e2 "verticalement", e3 en "profondeur" :
Ci-dessous le plus petit avec 8 nombres premiers consécutifs (e1=4,e2=6,e3=24) :
On peut aussi les représenter plus facilement sous la forme de suites symétriques des différences correspondantes caractéristique du type de la suite étudiée, avec le nombre premier de départ :
On peut aussi les transformer en k-uples particuliers, par exemple:
Si l'on considere le cas particulier e1=2, e2 croissant et les plus petits p1,p2,p3 correspondants, on obtient 3 nombres premiers impairs avec la plus petite différence (e1=2) et la plus grande (e2) , j'appelle ce triplet "nombres premiers écartelés":
3c
|
p1
|
p2
|
p3
|
e2
|
1
|
3
|
5
|
7
|
2
|
2
|
5
|
7
|
11
|
4*
|
3
|
29
|
31
|
37
|
6
|
4
|
137
|
139
|
149
|
10*
|
5
|
197
|
199
|
211
|
12*
|
6
|
521
|
523
|
541
|
18*
|
7
|
1667
|
1669
|
1693
|
24*
|
8
|
2969
|
2971
|
2999
|
28*
|
9
|
7757
|
7759
|
7789
|
30
|
10
|
12161
|
12163
|
12197
|
34
|
11
|
16139
|
16141
|
16183
|
42*
|
12
|
25469
|
25471
|
25523
|
52
|
13
|
40637
|
40639
|
40693
|
54
|
14
|
79697
|
79699
|
79757
|
58
|
15
|
149627
|
149629
|
149689
|
60
|
16
|
173357
|
173359
|
173429
|
70*
|
17
|
265619
|
265621
|
265703
|
82*
|
18
|
404849
|
404851
|
404941
|
90*
|
19
|
838247
|
838249
|
838349
|
100
|
20
|
1349531
|
1349533
|
1349651
|
118*
|
21
|
1895357
|
1895359
|
1895479
|
120*
|
22
|
5825999
|
5826001
|
5826127
|
126
|
23
|
10343759
|
10343761
|
10343903
|
142*
|
24
|
19918751
|
19918753
|
19918901
|
148
|
25
|
37369529
|
37369531
|
37369681
|
150
|
26
|
42082301
|
42082303
|
42082471
|
168
|
27
|
79167731
|
79167733
|
79167917
|
184*
|
28
|
151931909
|
151931911
|
151932103
|
192
|
29
|
191186249
|
191186251
|
191186447
|
196
|
30
|
192983849
|
192983851
|
192984059
|
208*
|
31
|
|
|
|
|
Une étrange coïncidence apparait très souvent . Pour les e2 avec (*) on retouve les nombres pour la première occurence d'une différence de nombres premiers consécutifs ! N'y aurait-il pas une sorte de compensation immédiate entre un très petit et un très grand écart ?
Avec 2 jumeaux :
4c
|
p1
|
p2
|
p3
|
p4
|
e2
|
1
|
5
|
7
|
11
|
13
|
4
|
2
|
137
|
139
|
149
|
151
|
10
|
3
|
1931
|
1933
|
1949
|
1951
|
16
|
4
|
2969
|
2971
|
2999
|
3001
|
28
|
5
|
20441
|
20443
|
20477
|
20479
|
34
|
6
|
48677
|
48679
|
48731
|
48733
|
52
|
7
|
173357
|
173359
|
173429
|
173431
|
70
|
8
|
838247
|
838249
|
838349
|
838351
|
100
|
9
|
4297091
|
4297093
|
4297199
|
4297201
|
106
|
10
|
14982551
|
14982553
|
14982677
|
14982679
|
124
|
11
|
30781187
|
30781189
|
30781319
|
30781321
|
130
|
12
|
34570661
|
34570663
|
34570799
|
34570801
|
136
|
13
|
43891037
|
43891039
|
43891187
|
43891189
|
148
|
14
|
79167731
|
79167733
|
79167917
|
79167919
|
184
|
15
|
|
|
|
|
|
16
|
|
|
|
|
|
Avec 3 jumeaux :
6c
|
p1
|
p2
|
p3
|
p4
|
p5
|
p6
|
e2
|
1
|
5
|
7
|
11
|
13
|
17
|
19
|
4
|
2
|
4217
|
4219
|
4229
|
4231
|
4241
|
4251
|
10
|
3
|
208931
|
208933
|
208961
|
208963
|
208991
|
208993
|
28
|
4
|
27507827
|
27507829
|
27507869
|
27507871
|
27507911
|
27507913
|
40
|
5
|
120151859
|
120151861
|
120151919
|
120151921
|
120151979
|
120151981
|
58
|
6
|
|
|
|
|
|
|
|
7
|
|
|
|
|
|
|
|
Avec 4 jumeaux :
8c
|
p1
|
p2
|
p3
|
p4
|
p5
|
p6
|
p7
|
p8
|
e2
|
1
|
263872067
|
263872069
|
263872097
|
263872099
|
263872127
|
263872129
|
263872157
|
263872159
|
28 |
2
|
|
|
|
|
|
|
|
|
|
3
|
|
|
|
|
|
|
|
|
......
Trouver des nombres premiers en réseau non consécutifs ou mieux, consécutifs (beaucoup plus difficile)
(*) Le 13 mai 2000 Paul Jobling a trouvé 12 chaines de 10 jumeaux en progression arithmétique non consécutifs :
i=0 à 9
(7146+i*7087)*17#+239670 +- 1
(27193+i*15352)*17#+39930 +- 1
(103299+i*8702)*17#+409602 +- 1
(240056+i*1185)*17#+399000 +- 1
(28070+i*24909)*17#+369168 +- 1
(43711+i*33725)*17#+160878 +- 1
(392688+i*2040)*17#+429018 +- 1
(263377+i*18202)*17#+359172 +- 1
(1952+i*70022)*17#+392772 +- 1
(104521+i*62645)*17#+353532 +- 1
(189110+i*89957)*17#+244200 +- 1
(419358+i*62769)*17#+424980 +- 1