Nombres premiers en réseau


J'appelle nombres premiers en réseau une suite de nombres premiers composée de progressions arithmétiques et/ou géométriques sur plusieurs dimensions (2 ou plus).

Cette suite peut-être formée de nombres premiers consécutifs.

Nombres premiers "2D":

Pour des progressions arithmétiques il s'agit de trouver des nombres premiers avec un écart e1 "horizontalement"
et e2 "verticalement" :

Le nombre en haut à gauche des tableaux indique le nombre de nombres premiers, c indique qu'il s'agit de nombres premiers consécutifs.

2D Jumeaux :

9
42 -->
Jumeaux
90
|
V
17
59
101
9
42 -->
107
149
191
90
|
V
19
61
103
197
239
281
109
151
193
Jumeaux
199
241
283

 

2D Reseau :

18

60 -->
798
|

V
-
-
224033
-
224153
-
224711
224771
224831
224891
224951
-
225509
225569
225629
225689
225749
225809
226307
226367
226427
226487
226547
-

   

19

90 -->
378
|

V
1973
2063
2153
2243
2333
2423
2351
2441
2531
2621
2711
2801
2729
2819
2909
2999
3089
-
-
-
-
-
3467
3557

   2D Escalier :

               
7c
2-->(jumeaux)
4
|
 V
5
7
11
13
17
19
23

  Si e1=2 on a aussi des jumeaux en progression arithmétique de raison e2 :


   
8c
10 -->
8
|
V
67944073
67944083
67944091
67944101
67944109
67944119
67944127
67944137

 

8c
2 --> (jumeaux)
28
|
V
263872067
263872069
263872097
263872099
263872127
263872129
263872157
263872159

 

2D 4x2 :
8
6 -->
30
|
11
17
23
29
41
47
53
59

 
8c
6 -->
20
|
344231
344237
344243
344249
344251
344257
344263
344269

2D Triangle :

6
6 -->
24
|
V
13
37
43
61
67
73

 

6c
6 -->
24
|
V
4116419
4116443
4116449
4116467
4116473
4116479

 

Nombres premiers "3D":

Pour des progressions arithmétiques il s'agit de trouver des nombres premiers avec un écart e1 "horizontalement",
e2 "verticalement", e3 en "profondeur" :

Ci-dessous le plus petit avec 8 nombres premiers consécutifs (e1=4,e2=6,e3=24) :

On peut aussi les représenter plus facilement sous la forme de suites symétriques des différences correspondantes caractéristique du type de la suite étudiée, avec le nombre premier de départ :

Nombres premiers en réseau et k-uples :

On peut aussi les transformer en k-uples particuliers, par exemple:

Jumeaux en progression arithmétique (consécutifs) :

Si l'on considere le cas particulier e1=2, e2 croissant et les plus petits p1,p2,p3 correspondants, on obtient 3 nombres premiers impairs avec la plus petite différence (e1=2) et la plus grande (e2) , j'appelle ce triplet "nombres premiers écartelés":

3c
p1
p2
p3
e2
1
3
5
7
2
2
5
7
11
4*
3
29
31
37
6
4
137
139
149
10*
5
197
199
211
12*
6
521
523
541
18*
7
1667
1669
1693
24*
8
2969
2971
2999
28*
9
7757
7759
7789
30
10
12161
12163
12197
34
11
16139
16141
16183
42*
12
25469
25471
25523
52
13
40637
40639
40693
54
14
79697
79699
79757
58
15
149627
149629
149689
60
16
173357
173359
173429
70*
17
265619
265621
265703
82*
18
404849
404851
404941
90*
19
838247
838249
838349
100
20
1349531
1349533
1349651
118*
21
1895357
1895359
1895479
120*
22
5825999
5826001
5826127
126
23
10343759
10343761
10343903
142*
24
19918751
19918753
19918901
148
25
37369529
37369531
37369681
150
26
42082301
42082303
42082471
168
27
79167731
79167733
79167917
184*
28
151931909
151931911
151932103
192
29
191186249
191186251
191186447
196
30
192983849
192983851
192984059
208*
31

 

Une étrange coïncidence apparait très souvent . Pour les e2 avec (*) on retouve les nombres pour la première occurence d'une différence de nombres premiers consécutifs ! N'y aurait-il pas une sorte de compensation immédiate entre un très petit et un très grand écart ?

Avec 2 jumeaux :

4c
p1
p2
p3
p4
e2
1
5
7
11
13
4
2
137
139
149
151
10
3
1931
1933
1949
1951
16
4
2969
2971
2999
3001
28
5
20441
20443
20477
20479
34
6
48677
48679
48731
48733
52
7
173357
173359
173429
173431
70
8
838247
838249
838349
838351
100
9
4297091
4297093
4297199
4297201
106
10
14982551
14982553
14982677
14982679
124
11
30781187
30781189
30781319
30781321
130
12
34570661
34570663
34570799
34570801
136
13
43891037
43891039
43891187
43891189
148
14
79167731
79167733
79167917
79167919
184
15
16

 

Avec 3 jumeaux :

6c
p1
p2
p3
p4
p5
p6
e2
1
5
7
11
13
17
19
4
2
4217
4219
4229
4231
4241
4251
10
3
208931
208933
208961
208963
208991
208993
28
4
27507827
27507829
27507869
27507871
27507911
27507913
40
5
120151859
120151861
120151919
120151921
120151979
120151981
58
6
7

Avec 4 jumeaux :

8c
p1
p2
p3
p4
p5
p6
p7
p8
e2
1
263872067
263872069
263872097
263872099
263872127
263872129
263872157
263872159
28
2
 
3
 

......

 

Challenges :

Trouver des nombres premiers en réseau non consécutifs ou mieux, consécutifs (beaucoup plus difficile)

(*) Le 13 mai 2000 Paul Jobling a trouvé 12 chaines de 10 jumeaux en progression arithmétique non consécutifs :

i=0 à 9
(7146+i*7087)*17#+239670 +- 1
(27193+i*15352)*17#+39930 +- 1
(103299+i*8702)*17#+409602 +- 1
(240056+i*1185)*17#+399000 +- 1
(28070+i*24909)*17#+369168 +- 1
(43711+i*33725)*17#+160878 +- 1
(392688+i*2040)*17#+429018 +- 1
(263377+i*18202)*17#+359172 +- 1
(1952+i*70022)*17#+392772 +- 1
(104521+i*62645)*17#+353532 +- 1
(189110+i*89957)*17#+244200 +- 1
(419358+i*62769)*17#+424980 +- 1



Vous pouvez aussi consulter les liens suivants :


Création par  Henri Lifchitz le 10 octobre 1999, dernière modification: 3 juin 2000.